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Summary: Simulated Annealing is a classical heuristic
search algorithm prevalently used for benchmarking and
solving combinatorial optimization problems. Built on
the principles of the Metropolis-Hastings algorithm, SA
incorporates a decreasing temperature schedule which
helps avoid local minima. For such heuristic methods,
the time to find a candidate solution and the solution’s
quality quantify the performance of the discrete opti-
mization approach. Throughout this text, we refer to an
open-source implementation of the simulated annealing
algorithm as SA1.

Vector Annealing is NEC’s optimized implementation
of an efficient simulated annealing algorithm using spe-
cial purpose hardware. Vector Annealing, or VA, sim-
ulates quantum behavior using conventional computing
technology without utilizing the actual quantum prop-
erties, hence is labeled as quantum-inspired computing.
NEC Vector Annealing greatly reduces the computa-
tional complexity associated with traditional Simulated
Annealers and accelerates the narrowing down of the
candidate solutions by a factor of upto 300 times at
problem sizes beyond the capabilities of conventional
methods. This support for very larger number of vari-
ables allows NEC VA to compute combinatorial opti-
mization from a huge combination of variables having
complex, real-world constraints.

Here we present a quantitative comparison of NEC’s
Vector Annealing (VA) solution against the simulated
annealing algorithm on financial portfolio optimization.
Markowitz’s Modern Portfolio Theory was used to for-
mulate portfolio management as a quadratic binary op-
timization (QUBO) problem and create a model that
invests based on the solution2. The number of stocks
considered and our level of control over each stock de-
termine the number of linear variables (i.e. the problem
size). We found that Vector Annealing generally outper-
formed Simulated Annealing in terms of solution qual-
ity and that its advantage over SA scales with problem
size. As Figure 1 demonstrates, tuning the parametriza-
tion of portfolio management as a discrete optimization
problem greatly affects the financial returns. We note
that this is a simplified tuning example for pedagogical
purposes, during a downtrend.

Figure 1: Both SA and VA perform better
after tuning, VA’s performance improvement
is greater. This plot corresponds to a 5,243
linear variable problem.

At Icosa, we employ more sophisticated parametriza-
tion of portfolio management and approach tuning with
a machine learning toolkit in real market conditions.

Methodology: Our formulation and testing of anneal-
ing approaches to improve portfolio optimization in-
volves four stages. First, stock market data is obtained
either from IEX’s platform or, for some international
stock prices, Yahoo Finance’s platform. Second, using a
tunable financial model, we deconstruct and reformulate
the original problem into one of discrete optimization.
Third, both SA and VA are used to find a candidate so-
lution to this problem. Finally, the candidate with the
lowest energy is considered the best solution and is for-
mulated into portfolio decisions using the same model.
To compare these discrete optimization approaches, we
chose a historical period with known stock market in-
formation and test both annealing approaches. For our
measure of performance, we subtracted the energy of
the best VA solution from the best SA solution. We re-
moved some of the highest energy differences - the out-
liers resulting mainly from SA’s inability to produce any
solution energy close to the averages produced by VA.
Tests of SA were ran on x86 CPU hardware whereas VA
tests were ran on NEC’s Vector Engine. The tempera-
ture related parameters were selected using an internal
function from SA software package and was used for
both SA and VA1. This selection of temperature range
was best suited for SA.
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Figure 2: Workflow for an ideal trading day. Financial data (historical stock prices) is collected and used to generate a
Markowitz Model [panel (a)]. The hyper-parameters governing the Markowitz model are tuned using a machine learning
model that runs continuously on a distributed computing platform [panel (b)]. The model is mapped to a quadratic
unconstrained binary optimization (QUBO) problem, and solved using Quantum-Inspired (QI) hardware or algorithm
[panel (c)]. The solution found by the solver represents the optimal investing strategy as defined by the constraints of the
Markowitz Model [panel (d)]. In this work, we used stock price data from the previous 10 trading days to generate a daily
trading strategy.

Results: Our results are summarized in Figure 3:

Figure 3: VA and SA performance for
different problems. Trading days column shows
number of days VA generated a better solution
than SA out of total number of days

The problem sizes were dictated by granularity chosen
and the equity market that we selected to evaluate. In
the scope of this text, granularity corresponds to the
number of linearly independent variables associated with
one stock. Higher granularity results in a higher num-
ber of independent variables. The first test was con-
ducted using price data of equities in the S&P 500 be-
tween 3/12/2018 and 8/1/2019. Some of the equities
had missing stock price data, so we limited our scope to
486 equities that had sufficient data. We applied a gran-
ularity of 5, which increased the problem size to 2,430
independent variables over 342 trading days.

We then considered all U.S. equities who had price data
available on IEX, yielding 5,243 stocks. We ran a test on
this data between 3/18/2022 and 3/2/2023 with a gran-
ularity of 1, resulting in 5,243 independent variables over
231 trading days. In addition, we ran a second test on
the same data but with a granularity of 2 and a date
range of 3/18/2022 to 5/16/2022, resulting in 10,486 in-
dependent over 32 trading days.

To create problems with large numbers of variables, we
made 2 different tests which included many interna-

tional equities. The first test included 17,833 equities
traded in France, Germany, U.K., and the U.S. between
3/18/2022 and 5/4/2022, yielding 17,833 independent
variables with a granularity of 1 over 24 trading days.
The second test included 25,034 equities from Canada,
France, Germany, Japan, Turkey, U.K., and the U.S. be-
tween 3/17/2022 and 4/1/2022, yielding 25,034 equities
with a granularity of 1 across 3 trading days.

VA consistently produced better quality solutions than
SA in our tests, this is despite the temperature param-
eters being chosen to optimize SA. We also found that
the the magnitude of the advantage of VA over SA —
the average energy gap between VA and SA — increased
as the number of variables grew for untuned models (as
seen in Figure 4), demonstrating that VA has a nontriv-
ial scaling advantage.

Figure 4: Growth of Vector Annealing’s
advantage with problem size. The errors
plotted reflect the outlier excluded 95%
confidence interval.
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Market Performance: We tested the performance of
VA and SA in US and international markets by convert-
ing their solutions to investment decisions based on a
financial model. In general, this model can have many
tunable parameters. Throughout our analysis, we fo-
cused on the solution quality difference between VA
and SA and disregarded actual financial returns as the
model’s parameters are not tuned. However, both the
discrete optimization energies and the financial returns
are quite sensitive to these parameters.

Figure 1 represents an instance with 5,243 tradeable
stocks in the US equity market. Here, tuned the return-
to-risk ratio coefficient and both the energy difference
and financial market performance between SA and VA
changed significantly, where VA’s superior performance
grew in both cases. Accurate fine-tuning for real world
trading is beyond what’s demonstrated in this paper.
At Icosa, we have built a proprietary machine-learning
toolkit to fine-tune problem parameters to generate
profit in financial markets.

Future Work: Our comparison of NEC’s improved
implementation of simulated annealing (VA) with an
open-source non hardware-accelerated simulated anneal-
ing showed that VA has a clear advantage that scales
with the number of independent variables in the prob-

lem. To the extent of our knowledge, this is the first
test where such a large number of stocks are considered
as part of a portfolio optimization problem and NEC’s
VA solution provides a competitive advantage over the
open-source method. We recognize that these large-scale
tests are not indicative of how this solver would perform
in real-world scenarios, as it is infeasible for most insti-
tutions to regularly trade 25,034 individual stocks, and
in addition, we used an untuned MPT model, which is
itself a too simple for real-world trading.

Instead, a more suitable application for financial institu-
tions is to focus on highly tuned trading algorithms with
high granularity focused on mid-sized markets, ones
involving 1000-5000 stocks. For example, we demon-
strated a significant improvement in the market perfor-
mance of the trading algorithm in the US equity mar-
ket with 5,243 tradable stocks with just a minor tun-
ing. At Icosa, we use more nuanced trading strategies
and tune them with machine-learning to achieve per-
formance improvements. VA’s ability to handle large
problems makes it practical to increase the granular-
ity of these mid-sized market models. Combining this
with Icosa’s proprietary model tuning, future work will
include testing fine tuned, hardware accelerated mod-
els with real trades to achieve financial advantage with
quantum-inspired methods.
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